Квантовую голограмму получили без сложения волн

Физики создали квантовую голограмму без прямого наложения двух световых волн. Вместо этого они использовали взаимосвязь запутанных фотонов, чтобы получить необходимую для построения изображения информацию. Статья опубликована в журнале Nature Physics.

Голограммы — это объемные изображения, которые получают, складывая две волны. В оптической голографии в роли волн выступают лучи света. Один из них отражается от предмета, и по разнице фаз со вторым лучом можно восстановить изображение. Поскольку каждой частице ставится в соответствие волновая функция, существует не только оптическая голография, но и квантовая, построенная на взаимодействии этих функций. Вместо того чтобы измерять яркость света, физики измеряют вероятность появления частиц в пространстве.

С помощью квантовой голографии уже была получена голограмма одиночного фотона: фотон с неизвестной поляризацией столкнули с эталонным и зарегистрировали, как наложились друг на друга их волновые функции. Это и позволило получить пространственное распределение неизвестной частицы. Эксперимент очень напоминал оптический, но в квантовой голографии присутствуют и эффекты, позволяющие создавать голограммы принципиально новыми методами.

Один из таких эффектов использовали физики из Университета Глазго под руководством Хуго Дефина (Hugo Defienne). Они создали квантовую голограмму без сложения двух волн.

Как и в оптических экспериментах, они использовали лазерный луч, который разделили на два пучка с помощью нелинейного кристалла. Кристалл позволил создать запутанные фотоны, находящиеся в связанных квантовых состояниях. Один поток фотонов попадал в пространственный модулятор света, содержащий изображаемый предмет. В качестве предмета использовали буквы «UofG» (аббревиатура названия университета) на жидкокристаллическом дисплее, а также кусочки скотча, капли силиконового масла и птичье перо.

Второй поток фотонов проходил через другой модулятор, чтобы избавиться от фазовых искажений, вызванных двулучепреломлением в нелинейном кристалле. Оба пучка после прохождения модуляторов попадали на цифровые камеры.

Схема эксперимента: пара запутанных фотонов проходит через два модулятора (SLM) и регистрируется двумя камерами (EMCCD). Один из модуляторов регистрирует фотоны с положительным поперечным импульсом по оси x, другой — с отрицательным. Чтобы создать голограмму, один из модуляторов выполняет измерения корреляций интенсивности на обеих камерах.

В классической голографии пучки нужно было бы наложить друг на друга, чтобы получить информацию о сдвиге фаз. В квантовом эксперименте ученые вместо этого использовали уникальное свойство запутанных фотонов: их способность влиять друг на друга без каких-либо взаимодействий.

Из-за этого влияния между сдвигами фаз отдельных пучков появились корреляции. Ученые измерили их, сравнив данные с двух разных камер в симметричных точках. Корреляций оказалось достаточно для построения изображения.

Изображения, восстановленные модулятором при разных значениях постоянного фазового сдвига.

Ученые также провели измерения, добавив в систему помехи в виде постороннего рассеянного света. Это не помешало получить изображение с четкими контурами, так что новый метод голографии менее восприимчив к внешним воздействиям, чем классическая интерференция.

Авторы работы отмечают, что голограмму можно получить и без второго модулятора. В таком случае перед камерой, регистрирующей второй пучок, нужно было бы установить вращающийся поляризатор, а фазовые искажения учесть в компьютерной модели. Ученые использовали модулятор, чтобы выполнить измерения, необходимые для подтверждения неравенства Клаузера-Хорна-Шимони-Хольта.

Оно является прямым следствием теоремы Белла, позволяющей экспериментально доказать существование квантовой запутанности. Подтвердив это неравенство, ученые показали, что квантовую голографию можно использовать не только для построения изображений, но и для получения характеристик квантовых состояний.

На свойствах запутанных частиц работает не только новый способ создания голограмм, но и квантовая коммуникация. Мы писали о создании сети квантовой коммуникации на основе запутанности между частотными модами сигнала. Также физики исследуют запутанные частицы, чтобы больше узнать о практическом значении волновой функции. Например, недавно им удалось сфотографировать запутанные фотоны.

Читайте также

Оставить комментарий

Вы можете использовать HTML тэги: <a href="" title=""> <abbr title=""> <acronym title=""> <b> <blockquote cite=""> <cite> <code> <del datetime=""> <em> <i> <q cite=""> <s> <strike> <strong>

Лимит времени истёк. Пожалуйста, перезагрузите CAPTCHA.