Физики не нашли нарушений CPT-симметрии в распадах ортопозитрония

Физики проверили выполнение CPT-симметрии в процессах трехфотонного распада ортопозитрония с точностью, которая оказалась в три раза больше, чем в предыдущих поисках. Они искали корреляции между спином ортопозитрония и плоскостью, в которой распространяются фотоны после его аннигиляции. Обнаруженная ими величина оказалась статистически незначимой, подтверждая таким образом сохранение фундаментальной симметрии с точностью 10-4. Исследование опубликовано в Nature.

CPT-симметрия — это фундаментальное свойство физических законов, чье нарушение еще ни разу не подтверждалось в эксперименте. Согласно ей, поведение любой физической системы, включая всю Вселенную, не должно поменяться при одновременной замене всех частиц на античастицы, инверсии четности и времени. В физике, однако, не принято утверждать, что нарушений CPT-инвариантности не существует: ученые предпочитают говорить о ее сохранении с некоторой точностью, которая определяется погрешностью эксперимента. Такой подход подразумевает постоянный поиск этих нарушений, который выражается в уменьшении погрешности и постоянном сужении диапазона параметров, в котором CPT-симметрия могла бы не работать.

Поскольку эта инвариантность касается всех типов взаимодействия, физики пробуют искать ее нарушения в различных типах материи. Они проверяют это свойство и на чистых барионах, и на барион-лептонных системах, которым относятся атомы и антиатомы, и на чистых лептонах. В последнем случае интересны электрон-позитронные взаимодействия, поскольку они описываются в рамках квантовой электродинамики, чьи теория и эксперимент достигли точности в 12 знаке после запятой. Предполагается, что исследование угловых корреляций при распаде ортопозитрония на три фотона могло бы помочь обнаружить нарушения CPT-симметрии модельно-независимым способом, но последний подобный эксперимент был проведен почти 20 лет назад, показав относительную точность 3 × 10-3.

Физики, работающие в коллаборации J-PET, базирующейся в Ягеллонском университете, проверили нарушение CPT-симметрии при распаде ортопозитрония на три фотона с точностью, превышающей предыдущий результат в три раза. Установка J-PET представляет собой позитронно-эмиссионный томограф, состоящий цилиндрической камеры, в которой рождаются позитроны, окруженной кольцом из пластиковых сцинтилляторов. Позитронии, то есть связанные системы электронов и позитронов, образуются преимущественно на поверхности вещества, окружающего источник. Эти экзотические атомы довольно нестабильны и благодаря аннигиляции быстро распадаются с рождением нескольких гамма-квантов, которые и детектируются сцинтилляторами.

Поскольку и электрон, и позитрон обладают полуцелыми спинами, результат их сложения может быть равен нулю или единице. В первом случае говорят об образовании парапозитрония, который распадается на два фотона, во втором — ортопозитрония, распадающегося на три фотона. Второй процесс представляет интерес с точки зрения проверки CPT-инвариантности, чье нарушения можно найти, если обнаружить корреляции между спином позитрония и ориентацией плоскости, в которой разлетаются все три фотона. Если конкретнее, физики рассматривают скалярное произведение вектора спина на вектор нормали к плоскости движения фотонов в системе центра масс ортопозитрония, получаемого как нормированное векторное произведение волновых векторов двух фотонов с наибольшими энергиями. Равенство нулю этой величины, усредненной по большому количеству измерений, будет означать отсутствие корреляций и, следовательно, выполнение CPT-симметрии.

Для проведения эксперимента авторы помещали в центр камеры атомы радиоактивного изотопа натрия-22. Натрий-22 испытывает бета-распад с образованием атома неона-22, позитрона и электронного нейтрино. Позитроны улавливались стенкой камеры, покрытой мезопористым кремнием, и образовывали позитронии. В силу того, что поляризация позитронов связана с углом, под которым они вылетают из источника, физики могли получить информацию о спине ортопозитрония, восстанавливая информацию о его местоположении в камере по продуктам его распада.

Физики фиксировали разлетающиеся в разные стороны высокоэнергетические фотоны по сигналу с пластиковых сцинтилляторов, расположенных так, чтобы точность определения направления составляла один градус. Помимо непосредственно трехфотонного распада ортопозитрония вклад в сигнал давало множество процессов, например, релаксация возбужденного ядра неона с последующим излучением фотона. Чтобы отсеять нерелевантные сигналы, ученые использовали фильтрационную функцию от формы сигналов, которая определяла характерные сигнатуры от трех фотонов.

Сцинтилляторы не давали информации об энергии фотонов, однако высокого углового и временного разрешения было достаточно для восстановления информации о положении их источника для фильтрованных сигналов. Зная направление разлета фотонов, физики восстанавливали их волновые вектора, а зная положение ортопозитрония — его спин. В совокупности этой информации было достаточно для проверки корреляций.

Авторы провели 26-дневное непрерывное измерение в августе 2018 года, в результате которого собрали информацию о более чем 7 миллионах событий. Физики отфильтровали те из них, для которых реконструкция обладала слишком большой геометрической неопределенностью, а также ложные трехфотонные события. В результате они выяснили, что большинство распадов отропозитрония происходит на поверхности стенки камеры, как изначально и предполагалось. Наконец, среднее значение корреляционного параметра с учетом всех неопределенностей, вызываемых экспериментальной установкой, оказалось равно 0,00067 ± 0,00095. Другими словами, обнаруженное нарушение симметрии оказалось меньше стандартного отклонения, равного 10-4, а потому статистически не значимо.

Авторы упомянули, что на момент выхода статьи они усовершенствуют свою установку, добавляя к ней дополнительный слой плотноупакованных сцинтилляторов. Вместе с усовершенствованием аннигиляционной камеры и увеличением длительности измерения это должно будет, по их оценкам, увеличить чувствительность измерения в 64 раза.

Аннигиляцию электрона и позитрона в пару фотонов пронаблюдать относительно просто, а вот обратный процесс: рождения электрон-позитронной пары из двух гамма-квантов — долгое время оставался чисто теоретическим. Недавно физики увидели этот процесс в периферических столкновениях релятивистских ядер золота, а также создали лазер, который в будущем позволит наблюдать рождение пар частица-античастица прямо из вакуума.

Иллюстрация к статье: Яндекс.Картинки

Читайте также

Оставить комментарий